A balanced secondary structure predictor.

نویسندگان

  • Md Nasrul Islam
  • Sumaiya Iqbal
  • Ataur R Katebi
  • Md Tamjidul Hoque
چکیده

Secondary structure (SS) refers to the local spatial organization of a polypeptide backbone atoms of a protein. Accurate prediction of SS can provide crucial features to form the next higher level of 3D structure of a protein accurately. SS has three different major components, helix (H), beta (E) and coil (C). Most of the SS predictors express imbalanced accuracies by claiming higher prediction performances in predicting H and C, and on the contrary having low accuracy in E predictions. E component being in low count, a predictor may show very good overall performance by over-predicting H and C and under predicting E, which can make such predictors biologically inapplicable. In this work we are motivated to develop a balanced SS predictor by incorporating 33 physicochemical properties into 15-tuble peptides via Chou׳s general PseAAC, which allowed obtaining higher accuracies in predicting all three SS components. Our approach uses three different support vector machines for binary classification of the major classes and then form optimized multiclass predictor using genetic algorithm (GA). The trained three binary SVMs are E versus non-E (i.e., E/¬E), C/¬C and H/¬H. This GA based optimized and combined three class predictor, called cSVM, is further combined with SPINE X to form the proposed final balanced predictor, called MetaSSPred. This novel paradigm assists us in optimizing the precision and recall. We prepared two independent test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. MetaSSPred significantly increases beta accuracy (QE) for both the datasets. QE score of MetaSSPred on CB471 and N295 were 71.7% and 74.4% respectively. These scores are 20.9% and 19.0% improvement over the QE scores given by SPINE X alone on CB471 and N295 datasets respectively. Standard deviations of the accuracies across three SS classes of MetaSSPred on CB471 and N295 datasets were 4.2% and 2.3% respectively. On the other hand, for SPINE X, these values are 12.9% and 10.9% respectively. These findings suggest that the proposed MetaSSPred is a well-balanced SS predictor compared to the state-of-the-art SPINE X predictor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

As there are quite a few difficulties for us to predict a protein structural class directly from its primary sequence, the protein structural prediction based on the predicted secondary structure will undoubtedly be the first choice we would like to take. Protein structural classes are generally defined as four classes: α, β, α/β, α +β. The protein secondary structure describes the local struct...

متن کامل

Employee Involvement is the Prime Organizational Culture Trait Influencing Balanced Scorecard Effectiveness in the Hospitals: Evidence from a Correlation Study

Background and Objectives: Balanced Scorecard is an increasingly popular tool for performance evaluation. Healthcare organizations have broadly adopted this method for implementing their strategic plans. There is, however, increasing concerns on barriers to balanced scorecard implementation. Built on the fundamental impacts of organizational culture on hospital performance, this study explored ...

متن کامل

The Relationship of Intelligence Beliefs, Self-Regulation, and Metacognition with School Refusal Behavior in Secondary High School Girl Students

This study aimed to determine the relationship of intelligence beliefs, academic self-regulation, and metacognition with school refusal behavior in female secondary high school students in Amol. This study was a descriptive one with correlational design. The statistical population consisted of all the female secondary high school students of which 214 students were selected using multistage ran...

متن کامل

Prediction of Secondary Structure of Citrus Viroids Reported from Southern Iran

Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...

متن کامل

SOLpro: accurate sequence-based prediction of protein solubility

MOTIVATION Protein insolubility is a major obstacle for many experimental studies. A sequence-based prediction method able to accurately predict the propensity of a protein to be soluble on overexpression could be used, for instance, to prioritize targets in large-scale proteomics projects and to identify mutations likely to increase the solubility of insoluble proteins. RESULTS Here, we firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 389  شماره 

صفحات  -

تاریخ انتشار 2016